Insiemi

- due insiemi A e B sono uguali quando contengono gli stessi elementi
- l'insieme vuoto è un insieme privo di elementi (U)
- l'insieme ambiente o universo contiene la totalità dei possibili elementi
- a) Corrispondenza univoca tra due insiemi A e B, a ogni elemento a di A corrisponde uno e un solo elemento b di B.
- b) Corrispondenza biunivoca a ogni elemento di un insieme corrisponde uno e un solo elemento dell'altro insieme e viceversa
- c) Operazioni:
- Intersezione l'insieme degli elementi appartenenti contemporaneamente ad A e B

$$A \cap B = (xI x \in A e x \in B)$$

 $A = (0,3,8) B = (0,3,6,88,99) A \cap B = (0,3)$

- Unione - l'insieme degli elementi appartenenti ad A oppure a B

A U B = (xI x
$$\in$$
 A oppure x \in B)
A= (0,3,8) B= (0,3,22,66) A U B = (0,3,8,22,66)

Numeri naturali

$$N = (1,2,3,...,n,...)$$

parentesi, potenze e radici, moltiplicazioni e divisioni, addizioni e sottrazioni

- a) Numeri primi maggiori di 1 che si dividono solo per sé stessi e l'unità = 2,3,5,7,11..
- b) Massimo Comune Divisore (MCD) è il maggiore fra gli interi che dividono tutti i numeri dati = prodotto dei fattori primi comuni con il minimo esponente

$$MCD(24,144,60) = 2 \text{ (alla seconda)} * 3 = 4*3 = 12$$

c) mcm - il minore fra gli interi multipli di tutti i dati = fattori comuni e non comuni con il massimo esponente

Numeri interi relativi

- valore assoluto di un numero relativo : IaI è una quantità positiva o nulla
- due numeri relativi aventi lo stesso valore assoluto e segni contrari sono opposti, stesso segno - concordi, segno diverso - discordi, stesso segno e valore - uguali

- a) Operazioni
 - Addizione: (-2) + (-3) = -5 (-4) + (+2) = -2
 - Sottrazione: (-3) (-4) = 1
 - Moltiplicazione e divisione: (-2)*(-3)=6 6/(-2)=-3

Numeri razionali

- tutte le possibili frazioni (rapporti fra numeri interi relativi)
- moltiplicando o dividendo i due termini di una frazione per uno stesso numero diverso da zero si ottiene una frazione equivalente a quella data 1/2 = 1/2 *1 = 1/2 *3/3 = 3/6 = 1/2
- a) Confrontare numeri decimali con frazioni
 - trasformarli in frazioni o forma decimale

$$x = 0.8 = 8/10$$
 $y = 0.63 = 63/10$ $z = 13/20$ $w = 7/25$

- si riducono tutte le frazioni allo stesso denominatore 100
 - x = 80/100 y = 63/100 z = 65/100 w = 28/100
- confrontare i numeratori w,y,z,x (in ordine crescente)

Percentuali

```
15% di 50 = 0,15 * 50 = 7,5 25% = 25/100 0,67 = 0,67 * 100% = 67%
```

- sconto = costo * tasso di sconto

costo = 12.000\$ tasso di sconto = 15% sconto = 12.000 * 15/100 = 1800 \$

- interesse = capitale * tempo * tasso di interesse capitale = 5000 \$ tempo = 6 mesi tasso di interesse = 6% interesse = 5000 * 6/12 * 6/100 = 150 \$
- variazione percentuale = nuovo ammontare (ammontare originale / ammontare originale) * 100 %

```
variazione percentuale = (360 - 300 / 300) * 100 % = 20% (incremento) variazione percentuale = (24 - 30 / 30) * 100 % = - 20% (decremento)
```

Potenze

- se la base è positiva il valore della potenza è sempre positivo
- se la base è negativa, il valore della potenza è positivo se l'esponente e pari (
 (-2) alla 4 = 16), negativo se l'esponente è dispari (-3) alla terza = -27
- valore della potenza nullo = base della potenza nulla

Proprietà delle potenze	
Prodotto di potenze con la stessa base	$a^n \cdot a^m = a^{n+m}$
Quoziente di potenze con la stessa base	$a^n: a^m = \frac{a^n}{a^m} = a^{n-m} \ (n > m)$
Prodotto di potenze con lo stesso esponente	$a^n \cdot b^n = (a \cdot b)^n$
Quoziente di potenze con lo stesso esponente	$a^n:b^n=rac{a^n}{b^n}=\left(rac{a}{b} ight)^n\ (b eq 0)$
Potenza di potenza	$(a^n)^m=a^{n\cdot m}$

Potenze particolari		
Base uguale a 1	$1^n = 1 \forall n \in \mathbb{N}$	
Base uguale a 0	$0^n = 0 \forall n \neq 0, n \in \mathbb{N}$	
Esponente uguale a 1	$a^1=a orall a \in \mathbb{R}$	
Esponente uguale a 0	$a^0=1 \forall a eq 0, a \in \mathbb{R}$	
Potenza pari di numeri relativi	$(-a)^{2n}=+a^{2n} \ (+a)^{2n}=+a^{2n} (a\in\mathbb{Z},n\in\mathbb{N})$	
Potenza dispari di numeri	$(-a)^{2n+1} = -a^{2n+1}$	
relativi	$(+a)^{2n+1} = +a^{2n+1} (a \in \mathbb{Z}, n \in \mathbb{N})$	
Potenza di numeri razionali	$\left(rac{a}{b} ight)^n=rac{a^n}{b^n}$	
Potenza con esponente negativo	$a^{-n} = \frac{1}{a^{+n}}$ $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{+n}$	

Monomi

- espressione senza addizioni o sottrazioni
 - a) Grado complesso somma degli esponenti delle lettere del monomio
 - b) Grado relativo a una lettere l'esponente con cui compare la lettere
 - c) Dati 2 o più monomi, la loro somma è un monomio solo se i monomi sono uguali tra di loro
 - d) Un monomio si dice divisibile per un altro monomio se esiste un terzo monomio che moltiplicato per il secondo dia come risultato il primo

Polimoni

- somma di più monomi non tutti simili fra loro

- il grado di un polinomio è il massimo fra i gradi dei suoi termini
- polinomio omogeneo : costituito da termini aventi lo stesso grado

a) Prodotti notevoli
$$(a + b) \cdot (a - b) = a2 - b2$$

$$(a + b + c)3 = a3 + b3 + c3 + 3a2b + 3ab2 + 3a2c + 3ac2 + 3b2c + 3bc2 + 6abc$$

$$(a + b)2 = a2 + 2ab + b2$$
 $(a - b)2 = a2 - 2ab + b2$ $(a + b)3 = a3 + 3a2b + 3ab2 + b3$ $(a - b)3 = a3 - 3a2b + 3ab2 - b3$

$$(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc$$

 $(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc$
 $a3 + b3 = (a + b) \cdot (a2 - ab + b2)$
 $a3 - b3 = (a - b) \cdot (a2 + ab + b2)$

Numeri razionali, irrazionali, reali e radicali

a) Irrazionali - non esprimibili sotto forma di frazione (quindi decimali) illimitati non periodici

Il radicale algebrico $\sqrt[n]{a}$ (con $a \in \mathbb{R}$) è ogni valore reale la cui potenza n-esima è pari ad a.

Con <i>a</i> > 0 e <i>n</i> pari	il radicale algebrico assume due valori reali opposti	esempio:	$\sqrt{9} = \pm 3$
Con $a > 0$ e n dispari	un valore positivo	esempio:	³ √8 = 2
Con <i>a</i> < 0 e <i>n</i> pari	nessun valore reale	esempio:	$\sqrt{-4}$ non esiste
Con a < 0 e n dispari	un valore negativo	esempio:	$\sqrt[3]{-27} = -3$

radicale algebrico - numero reale non negativo la cui potenza è uguale ad a $\sqrt{4} = 2$ infatti $2^2 = 4$

Equazioni

- a) Impossibile: non ci sono soluzioni $x^2 = -4$
- b) Indeterminata: ha infinite soluzioni $(x + 1)^2 + x = x^2 + 3x + 1$
- c) Determinata: ha un numero finito di soluzioni $x^2 = 16 = 4$
- d) Intera: l'incognita non compare nel denominatore x/2 5 = 3
- e) Frazionaria: l'incognita appare nel denominatore $1/x^2 + x=1$
- f) Irrazionale: l'incognita compare nell'argomento di un radicale

$$x + \sqrt{3x + 1} = 3$$

- non è irrazionale $\sqrt{5}x+4x-\sqrt{7}=0$

Teorema fondamentale dell'algebra - un'equazione determinata di grado n ammette al massimo n soluzioni nell'insieme dei numeri reali, alcuni delle quali potrebbero coincidere.

- a) Il grado di un'equazione a una sola incognita è il massimo esponente con cui l'incognita compare nell'equazione ridotta in forma normale
 - primo grado 2x+1=0
 - secondo grado 2x+x^2=1

$$x+1/x - 3x = 0$$

ridurre in forma normale; moltiplico i membri per x: -3x^2+x+1=0 è di secondo grado

b) condizioni di esistenza

$$x-2/(x-3)(x+5)=0$$

soluzione: x-2=0 x=2 esiste perché le condizioni di esistenza sono rispettate

- c) equazioni di primo grado: ax+b=0
 - a≠o x=-b/a
 - a=0 b≠0 impossibile
 - a=0 b=0 indeterminata
- d) equazioni incomplete di secondo grado

-	c=0 ((spuria)	$ax^2+bx=0$
---	-------	----------	-------------

$$x(ax+b)=0$$
 $x1=0$ $x2=b/a$

- b=0 (pura)
$$ax^2+c=0$$

$$x^2=-c/a$$
 $x_{1,2}=+-\sqrt{-c/a}$

$$x1,2=0$$
 (sol. doppia)

e) equazioni complete di secondo grado - nessuno dei 3 elementi si annulla

$$x_1 = (-b + \sqrt{b^2 - 4ac})/2a$$
 $x_2 = (-b - \sqrt{b^2 - 4ac})/2a$

la discriminante influenza la realtà delle radici

_	se è > 0= radici reali distinte	
_	se e > 0= radici reali distillite	

$$2x^2-6x+1=0$$

$$d = +-2\sqrt{7}$$

$$2x^2-8x+8=0$$

$$3x^2-5x+4=0$$

esempi

$$x^4-5x^2-36=0$$

D= 25+4*36=169=13

cerco le soluzioni: m=x^2 m1=9 e m2

m1= x^2 9= x^2 x=3 e x=-3 sono soluzioni

 $m2=x^2 -4=x^2$ nessuna radice; non è soluzione

 $x^4-5x^2-36=0$ SOLUZIONE: x=3 e x=-3

|a1x+b1y=c1 a1/a2=b1/b2=c1/c2

|a2x+b2y=c2

Disequazioni

Una disuguaglianza tra due espressioni algebriche letterali verificata solo per alcuni valori numerici assegnati alle lettere.

a) rappresentazione grafica

$$x > -1$$
 $\Rightarrow x \in (-\infty; a)$ $x < a$ $\Rightarrow x \in (-1; +\infty)$
 $x \le +2$ $\Rightarrow x \in [b; +\infty)$ $x \ge b$ $\Rightarrow x \in (-\infty; 2]$
 $-2 < x \le 1$ $\Rightarrow x \in (c; d]$ c escluso e d compreso $c < x \le d$ $\Rightarrow x \in (-2; 1]$

b) disequazioni intere di primo grado: ax+b>0 oppure ax+b<0 $ax>-b \Rightarrow |a>-b/a$ se a>0 oppure $ax<-b \Rightarrow |x<-b/a|$ se a>0 |x>-b/a| se a<0

esempio

$$|2x+1>0 \Rightarrow 2x>-1 \Rightarrow x>-1/2$$

 $|3-4x<0 \Rightarrow -4x<-3 \Rightarrow x>3/4$

- c) disequaz. frazionarie di primo grado: l'incognita compare al denominatore $2/x-1 \ge -1 \Rightarrow (2/x-1)+1 \ge 0 \Rightarrow 2+x-1/x-1 \ge 0 \Rightarrow x+1/x-1 \ge 0$ $N \ge 0 \Rightarrow x+1 \ge 0 \Rightarrow x \ge -1$ il valore x=-1 deve essere incluso mentre x=1 escluso $D>0 \Rightarrow x-1 \Rightarrow x>1$ soluzione $(-\infty;1]$ e $(1;\infty)$
 - d) disequazioni intere di secondo grado

$$x^2-x+1<0$$
 non ammette soluzioni

$$-x^2+5x-6\le 0$$
 radici: x1=2 x2=3 soluzioni: x \le x1 e x \ge x2 x $^2-3x+2< 0$ radici: x1=1 x2=2 soluzioni: x1

- e) disequaz. frazionarie di secondo grado
 - se a(x)/b(x)>0 la soluzione e data |a(x)>0 e |a(x)<0 dall'unione di |b(x)>0 |b(x)<0
 - se a(x)/b(x)<0 la soluzione e data |a(x)>0 e |a(x)<0 dall'unione di |b(x)>0 |b(x)>0

Logaritmi ed esponenziali

Geometria analitica

- a) distanza tra due punti
- AB= | |y2-y1| se x1=x1 | |x2-x1| se y1=y1
 - $|\sqrt{(x^2-x^1)} + (y^2-y^1)| \leq in generale$

Punto medio: $M = (x_1+x_2/2); (y_1+y_2/2)$

- b) casi particolare:
- $a=o \Rightarrow by+c=o \Rightarrow y=-c/b y=k (k=costante) \Rightarrow l'asse x ha equazione y=o$
- b=0 \Rightarrow ax+c=0 \Rightarrow x=-c/a x=h (h = costante) \Rightarrow l'asse y ha equazione x=0
- $c=0 \Rightarrow ax+by=0 \Rightarrow 1 e 3 quadrante ha equaz. y=x ; il 2 e 4 quadrante y=-x$
- c) $b \neq 0 \Rightarrow ax+by+c=0$ equaz. generale $\Rightarrow by=-ax-c \Rightarrow y=-ax/b-c/b$
- coefficiente angolare : -a/b=m
- termine noto : -c/b=q
- equazione in forma esplicita o canonica: y=mx+q
- d) rette parallele e perpendicolari
 - parallelismo : m1=m2
 - perpendicolarità: m1*m2=-1 oppure m1=-1/m2
- e) rette passanti per 1 o 2 punti: $P=(x_0;y_0)$ $y-y_0=m(x-x_0)$ ese.: P(1;2) hanno equaz. y-2=m(x-1) $y-y_1/y_2-y_1=x-x_1/x_2-x_1$
- f) equazione segmentaria: x/p + y/q=1
- g) distanza di un punto da una retta $d=|ax0+by0+c|/\sqrt{a^2+b^2}$
- 1. Equazione generale di una conica $F(x;y)=Ax^2+Bxy+Cy^2+Dx+Ey+F=0$
- A,B,C,D,E,F: coefficienti
 - a) circonferenza:
 - equazione normale: $x^2+y^2+ax+by+c=0$
 - equazione generale: kx^2+ky^2+kax+kby+kc=0 k=constante
 - coordinate del centro C=(alfa;beta) e il raggio r

a=-2alfa alfa=-a/2 c=alfa 2 +beta 2 -r 2 r= \sqrt{alfa}^1 +beta 2 -c

- a.1) posizioni reciproche tre rette e circonferenze
 - esterna: d>r
 - tangente: d=r
 - secante: d<r
- b) elisse: PF1+PF2=2a F1 e F2 - i due fuochi

2a - somma (costante) delle distanze di un punto P dagli stessi due fuochi

- F1=(-c;0) F2=(c;0)
- equazione canonica o normale: $x^2/a^2 + y^2/b^2=1$
- a= semiasse maggiore b=semiasse minore c=semidistanza focale legame tra a,b,c: $c^2=a^2-b^2$
 - eccentricità: e=c/a

La circonferenza è un'ellisse con eccentricità nulla

- c) parabola: y=ax^2+bx+c
- se a è positivo la parabola è rivolta verso l'alto
- se a è negativo la parabola è rivolta verso il basso

 $D=b^2-4ac F=(-b/2a;-D/4a+1/4a) y=-D/4a-1/4a x(asse di simmetria)= -b/2a V(vertice)=(-b/2a;-D/4a)$

- d) iperbole: |PF1-PF2|=2a
- F1=(-c;0) F2=(c;0)
- equazione cronica o normale: $x^2/a^2-y^2/b^2=1$
- $c^2=a^2+b^2$
- -e=c/a
 - e) iper. equilatera: asintoti perpendicolari tra loro y=-(b/a)x y=(b/a)x
- equazione canonica: $x^2/a^2-y^2/a^2=1$ $x^2-y^2=a^2$
- equazione degli asintoti: y=-x e y=x

Riconoscimento di una conica

- se D<0= elisse, in particolare una circonferenza se A=C e B=0
- se D=0: parabola
- se D>0= iperbole, iperbole equilatera solo se A+C=0
- 2. Proporzionalità diretta e inversa fra grandezze
 - y/x=k y=kx
 - x*y=k y=k/x

Funzioni

- a) campo di esistenza
- razionali intere: esistono per ogni valore reale di x
- razionali frazionali: il denominatore deve essere diverso da o
- irrazionali: se l'indice della radice è pari, il radicando deve essere positivo
- trascendenti: esponenziali (per ogni valore di x), logaritmiche (l'argomento deve essere positivo), trigonometriche (sin e cos per ogni valore di x, tg per x diverso da $\pi/2+k\pi$)

b) definizioni

- suriettiva: ogni elemento y è immagine di almeno un elemento di x f(X)=Y X=(1,2,3) Y=(1,2,4,6) y=2x segue che f(X)=(2,4,6) non è suriettiva
- iniettiva: a elementi distinti di X corrispondono elementi distinti di Y se x1 \neq x2 allora $f(x1)\neq f(x2)$ un elemento f(X) potrebbe essere l'immagine di più di un elemento di X X=(-1,1,2) Y=(1,2) y=|x| allora f(X)=(1,2) e l'elemento y=1 è immagine di due elementi distinti di X (x=1 e x=-1), la funzione non è iniettiva
- una funzione di X in Y che è sia iniettiva che suriettiva viene detta biunivoca la biunivoca è anche invertibile, cioè posso scambiare i posti delle variabili
 - funzione crescente: $f(x_1) < f(x_2)$
 - funzione decrescente: $f(x_1)>f(x_2)$
 - funzione pari: f(x)=f(-x)
 - funzione dispari: f(-x)=-f(x)
 - massimo assoluto xo: $f(x) \le f(x0)$
 - minimo assoluto x0: $f(x) \ge f(x0)$

c) intersezioni

- tra curve: date le due curve y=f(x) e y=g(x) bisogna fare un sistema
- con gli assi: x ha equazione y=0 e y ha equazione x=0 y=f(x) con l'asse x y=f(x) e y=0 sottosistema

Per studiare il segno di una funzione è sufficiente ricercare i valori della x in corrispondenza dei quali la funzione risulta nulla o positiva: in tutti gli altri punti del C.E. la funzione sarà negativa

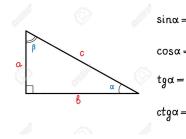
Curva esponenziale: $y=a^x$ (con a>0 e a diverso da 1) passare per (1;0)

- decrescente se 0<a<1, crescente se a>1

Curva logaritmica: y=log a di x(con a>0, a diverso da 1 e x>0) passa per (1;0),(a;1)

- decrescente se 0<a<1, crescente se a>1

Trigonometria

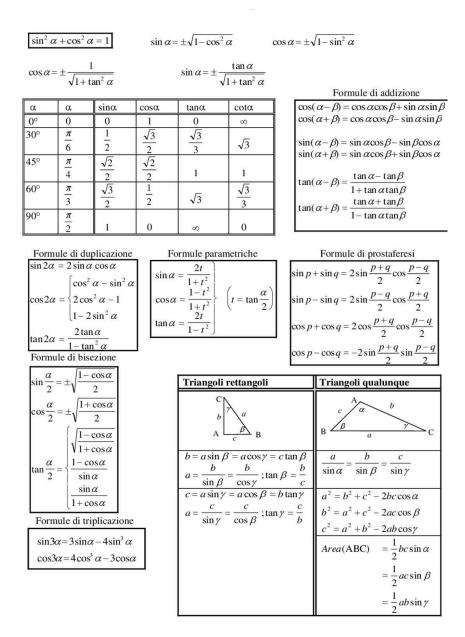


- disequazioni: 1 quadrante $0 \le \alpha < \pi/2$ 2 quadrante $\pi/2 \le \alpha < \pi$ 3 quadrante $\pi \le \alpha < 3/2\pi$ 4 quadrante $3/2 \le \alpha < 2\pi$

$tan(2\pi - \alpha) = -tan(\alpha)$ $cot(2\pi - \alpha) = -cot(\alpha)$	$\tan(\frac{\pi}{2} - \alpha) = \cot \alpha$ $\cot(\frac{\pi}{2} - \alpha) = \tan \alpha$
() ()	· · · · · · · · · · · · · · · · · · ·
$\sin(-\alpha) = -\sin(\alpha)$	$\sin(\pi - \alpha) = \sin(\alpha)$
$\cos(-\alpha) = \cos(\alpha)$	$\cos(\pi - \alpha) = -\cos(\alpha)$
$\tan(-\alpha) = -\tan(\alpha)$	$\tan(\pi - \alpha) = -\tan(\alpha)$
$\cot(-\alpha) = -\cot(\alpha)$	$\cot(\pi - \alpha) = -\cot(\alpha)$

 $\sin(2\pi - \alpha) = -\sin(\alpha)$

 $\cos(2\pi - \alpha) = \cos(\alpha)$



Probabilità, statistica e calcolo combinato

- a) calcolo delle probabilità: P(E)= numero casi favorevoli/num casi sfavorevoli P(E)= probabilità di un evento E; è un numero compreso tra 0 e 1
 - eventi incompatibili: non possono avvenire contemporaneamente $E \cap F = \emptyset$ (in caso contrario sono compatibili)

P(E UF)=P(E)+P(F)

 eventi indipendenti: se verificando E non cambia la probabilità che si verifichi F (in caso contrario sono dipendenti)

 $P(E \cap F) = P(E) * P(F)$

- evento impossibile: P(E)=0

- evento certo: P(E)=1

evento opposto: P(E)=1-P(E)

b) coeficiente binomiale:
$$\binom{n}{k}=C(n;k)=\frac{n!}{k!\cdot(n-k)!},\qquad n,k\in\mathbb{N},\ 0\leq k\leq n,$$
n: elementi; k: classe

esempio:
$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot (2 \cdot 1)} = \frac{120}{12} = 10$$

- c) statistica:
 - la moda rappresenta la massima frequenza
 - la mediana è l'osservazione che occupa la posizione centrale della successione: N dispari= coincide con l'elemento che occupa la posizione (N+1)/2; N pari= è la semisomma dei due elementi che occupano le posizioni N/2 e (N/2)+1
- d) calcolo combinatorio
- disposizioni semplici : D n,k = n*(n-1)*(n-2)*(...)*(n-k+1)=n!/(n-k)!
- disposizioni con ripetizione: D(n,k); dove k≤n
- permutazioni semplici: Pn= Dn,n= n*(n-1)*(n-2)*(...)*1=n!
- permutazioni con ripetizione: P n,k= n!/k!
- combinazioni semplici: C n,k=n!/(n-k)!*k!
- combinazioni con ripetizione: Cn,k=(n+k-1)!/(n-1)!*k!

Geometria elementare